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Non-Abelian nonlinear lattice equations on finite interval

M I Gekhtmant

Department of Theoretical Mathematics, The Weizmann Institute of Science, Rehovot 76100,
Istael

Received 10 June 1993

Abstract. We apply the inverse spectral problem method to the class of non-Abelian nonlinear
lattice equations on the finite interval, The integrable discrete nonlinear Schrdinger and discrete
modified Korteveg—de Vides equations are considered as examples. In the latter case the farge time
asymptotics for solutions are found.-

1. Introduction

In recent years much attention has been paid to an investigation of boundary-value problems
for integrable nonlinear equations, both partial differential and differential-difference [1-41.

The famous work of Moser [5], where the finite Toda lattice with free ends has been
integrated, can be viewed as a first result in this direction for integrable lattice equations.
Berezansky [6,7] used the inverse spectral problem for Jacobi matrices [8] to integrate the
half-infinite Toda lattice with one end at —oo. We should also mention in this connection [9],
where the role played by orthogonal polynomials on the line in the investigation of half-infinite
lattices has been first recognized and [10], where Toda flows on self-adjoint matrices in £2{Z)
have been investigated.

The analogue of the direct and inverse spectral problem for self-adjoint difference
expressions with operator coefficients (operator Jacobi matrices) allowed the application
of the methods of [6,7] to the investigation of isospectral deformations of operator Jacobi
matrices [11, 12] and furthermore, after a proper generalization of the spectral theory to the
non-symmetric case, to consider in [13, 14] Lax equations

__d
T dr

where L = L(¢) is a finite or half-infinite difference expression with operaior coefficients
acting on sequences (i,) of vectors from some Banach space

L=[L;Al=LA-—-AL - - (1.1)

(Lu)y = An—tttn—1 + Bnity + tint1 (1.2)

where n = 0,...,N € o0, u_; = 0, A, = 0, A, is invertible (# > 0) and
25V AR | =0, Ay =0, if N < oo

An auxiliary operator A in (1.1) is a finite-difference expression with operator coefficients.
Non-Abelian Toda and Volterra lattices (cf [15, 16]) are particular cases of (1.1). These
equations were integrated in [13, 14] in the finite and half-infinite situation.

T Recipient of a Dov Biegun Postdoctoral Fellowship.
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6304 M I Gekhtman

The main point in the integration of the Lax equation (1.1) is to consider an evolution of the
so-called moment sequence S = (5,)52,, that corresponds to the difference expression (1.2):

Sp = (Ln)ﬂﬂ .

It turns out that S, satisfy linear equations

& k2
$o=) MiSers+ ) SyiN;  n=0,... (1.3)
Jj=0 j=9

where numbers k;, k; and operator coefficients M;, N; are determined by the auxiliary
operator A. Generally speaking, M;, N; depend on unknown functions A,, B.. However,
in many situations it is possible to solve system (1.3) and then to restore unknown
functions A,, B,, using the inverse spectral problem.

It is interesting to impose certain additional restrictions on coefficients A,, B, in(1.2) and
to consider the Lax equations which are compatible with these restrictions. In such a way one
obtains reductions of non-Abelian integrable lattices. One of the possible reductions of the Lax
equation (1.1} in the finite case is considered in section 2. (The half-infinite situation has been
treated in [17].) In section 3 we study the spectral problem for the corresponding difference
expression (1.2} and in section 4 give a recipe for solving the initial boundary-value problem
for the non-Abelian equations introduced in section 2 with particular boundary conditions
compatible with the Lax equation. These results are applied in section 3 to the investigation of
the initial boundary-value problem on the finite interval for the discrete modified Kdv (DMKdV)
equation.

Section 6 is devoted to the investigation of the integrable version of the discrete nonlinear
Schridinger (DNLS) equation

ifg = (1 = 72D (rret + 1) — 27 (1.4)

which is also known as the Ablowitz—Ladik model, since Ablowitz and Ladik introduced this
equation and studied it by means of the inverse scattering problem method in the double-infinite
case [18]. We should emphasize the difference between (1.4) and the standard discretization
of the nonlinear Schrédinger equation, which appears in physics in the form

iy = (et + Pug1 — 27) = [rufPr (1.5)

and is non-integrable. The comparison of different features of the integrable and non-integrable
DNLS equations can be found, e.g., in [19].

Finally section 7 treats other boundary conditions similar to those considered in [1,20] for
the half-infinite Toda lattice. .

We would like to point out the close connection between our approach and methods of
papers of Common and Hafez [21] and Common [22], where properties of various classes of
continued fractions and related moment problems were used to linearize half-infinite DMEKJV,
DNLS and some other lattice equations.

2, Lax equation

We consider the Lax equation

L=IL, A 2.1)
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associated with the following difference expression with matrix coefﬁgients
(Liyy = (1= RE_ a1+ (Rot = Rditn +ttags
Ui=uy =0 =)y ua€C™ Ry =R.(f) € C™". 2.2)

We also assume that the following additional conditions are valid:

1~ R%isinvertiblen =0,..., N — 1 (2.3)
and

R%, =R:=1. : 24

In what follows we identify the difference expression L with block 3-diagonal matrix
acting in C¥+1™ The auxiliary operator A is chosen in the form

(Au)p = Cptin + Dytipy1 + Eitpys Cn = Co(t) D, = Dy(?) n=0,....N.
(2.5)

Here £ does not depend on £.

It follows from (2.1) and (2.3) that matrices Cp, Dy, £ and coefficients of the difference
expression (2.2) completely determine C, (# = 1,...,N}jand D, (n = 1,...,N = 1).
Therefore the consistency of (2.5) with (2.1)~(2.4) depends upon an appropriate choice of
Co, Dqg, E. If, in addition, we want the Lax equation to be local with respect to R, then it
can be verified directly that Cp, Dy, E should be chosen to satisfy the following conditions:

R,E=+ER, n=10,....N . Dy=R_E—ER Co=C—{R_y, ERqg}
(2.6)

where C € C™*™ does not depend on ¢ and [C, E] = 0, The Lax equation implies now that
Dy =Ry E — ERpyy Co=C—{Rp, ERy}

and is equivalent to the nonlinear system of differential equations

Ry= (1= RYRy1E — ERp1(1 — R} 4+ [Ry, C] n=0,...,N—1

Ry =[R.,C] R, =[Ry.C] R, =R}y =1. o0

Obviously, the change of variabies R, — UR, U‘i, where I/ = CU, leads to the system

Ry =1 —R>)Ry1E ~ ERya(1 — RD) n=0,...,N—1 .

(2.8)

Rau=® Ry=®, P, 0 eC™ Pl=li=1

and therefore without loss of-generality we may assume C = 0.
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3. Spectiral data and inverse problem

In order to apply the inverse spectral problem method to the system (2.8) let us consider spectral
data that correspond to the difference expression (2.2) viewed as a linear operator in CV+Dm,

For any A € C one can construct the set of matrix polynomials Po(A) = 1,..., P,(A) by
means of the recursion
APL(A) = (1= RE_)Poy (M) + (Rom1 — R)P,(M) + Potd)  n=0,...,N—1.

(3.1
Then P, (1) is a polynomial of degree n
Py(A) = A1+ (Ro—y — R_DM 140,
Let

N
Pyp1(A) = A1+ Ry — Ry-D)Py(M) — U= R )Py =A"114 3 " Fa. (3.2)
j=0

It is easy to see that the point A belongs to the spectrum of L if and only if
det Py (A) =0. (3.3)

Due to the isospectral property of the Lax equation, the scalar poiynomial det Py (L)

conserves, if R, (n =0, ..., N — 1) evolve in accordance with (2.7) or (2.8). In fact, we shall

show later that the polynomial Py.q(}) itself is an integral of motion of the system (2.8).
Following [13, 14] we consider the sequence § = (5;)32,, of matrices from C™">™

S, =M n=1,2,... So=1 (3.4)

where (L™)gp is a coefficient of ug in the expression for (L"u)o or, in other words, the upper
left block m x m coefficient of the matrix L". We shall call § 2 moment sequence of L. To
justify the term “moment’, let us consider (2.2) under the additional assumptions

R,=R' n=1,...,N Ry <1 n=0,...,N~—1. (3.5)
‘We assume also that
[RZ, Ri]1 =0 nk=-~1,0...N. (3.6)

Then L is similar to the self-adjoint operator L = V'LV, where V is a block diagonal
operator in CW+1m;

(Vi) = Vaity Vo=1 n=(1=RO...A-R:)? n=1,...,N
and L has a form
Ea)n = (= RE_)Pun-1 + (Raot — Rty + (L~ RVt .
According to the theory of symmetric second-order difference expressions with matrix

coefficients [8, 23] there exists a set of non-negative m x m matrices py, - - -, pg such that
K —
Se=Y Mg  n=01,... : 37
j=1

where Ai,...,Ax are distinct points of the spectrum of L (and therefore of L). The
representation (3.6) means that S, is an nth moment of the non-negative matrix measure
with points of growth A; and jumps p; = p;(4;).

Given a sequence § = (5,)52, of m x m matrices, a natural question arises: when Sisa
moment sequence of the difference expression (2.2) which satisfies (2.3), (2.4).
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Theprem 1. The sequence S = (5,)32, of m X m matrices is the moment sequence of some
difference expression (2.2)~(2.4) with R_;, Ry given if and only if the following conditions
hold true.

(1) S is non-degenerate, i.e. foreveryn =0, 1,..., N the block Hankel matrix

Hy, = (8111 10 7 A (3.8)

is invertible;

)
Sopqz = {Ro1, Sapal} n=01,... (3.9)

(3} for every k= 0,1,...
N
Swakr1 =— 2 FySps (3.10)
=0

where m x m matrices Fy, . .., Fy satisfy the relations

RNFN-zk+1 Fyore1R1 = Fyoo

N ‘ (3.11)
RyFy_op + Fy—zxR_1 =0 k=0,..., [E] Fypy=1, F;=0.

The skeich of the proof will be given in the appendix.

Remarks,

(1} Conditions (3. 8) and (3. 10) ensure § to be the moment sequence of some difference
expression (1.2} (see {13, 14]), whereas relations (3.9) and (3.10) are responsible for this
difference expression to be of the form (2.2)(2.4).

(2) Matrices Fy, ..., F, in (3.10) coincide with coefficients of the polynomial Pyi1(X)
(equation (3.2)), which correspond to L.

- {3) Assumptions (3.5) and (3.6) imply the positive-definiteness of Hy in (3 B).

The inverse problem for (2.2) consists in recovering coefficients R, from the given moment
sequence which meets conditions of theorem 1. The recurrent procedure for the solation of the
inverse problem in the case of general difference expression (1.2) was presented in [13, 14].
Another approach, proposed recently in [24], is based on the inversion of block Hankel
matrices (3.8). Taking an advantage of the special form of (2.2), one can show that if

= (J’_,.(n) Yik=0 'V;

(n} e [mxm
is an inverse of H,, then the formulae
Rci =R+ %Y., n=0,.. N (3.12)

give the coefficients of the corresponding difference expression (2.2). As we shall show below,
in particular cases (3.12) may be rewritten in a more explicit way.
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4. Evolution of speciral data

Let us assume now that R, (n = 0, ..., N — 1) evolve in accordance with nonlinear system
(2.8) or, equivalently, the difference expression (2.2) satisfies the Lax equation (2.1). Consider
the moment sequence § = (S;)52, corresponding to L. Then

= (L)oo = (L") ADoo = [Sa, Co] — Do(L™)10 — E(L™)p - @D
Using evident equalities
Sept = (L-L"Y0 = (Re—Ro)Su+ (L0 Snez = (LDo0Sp (Lot (L"ho+H(LH (L )20
and bearing in mind (2.2) and (2.6}, one gets after excluding (L™)1g, (L") from (4.1)
Sn = —Su{R_1, ERo} + R_i{E, R_1}Su + [E, R11Snt1 ~ ESpp2. (4.2

Direct calculations show that (4.2) is consistent with (3.9). It follows from (2.6) that (4.2}
reads

Sn = _SnE{R—l, Ro} +2ES, — ESn-i-Z (43)
if £ and R,, commute, and
Sn = —SxE[Ro, R.(1+2ER 18,41 — ESpia (4.4)

if E and R, anticommute.

Lemma 1. Let coefficients of L satisfy the nonlinear system (2.8). Then
Pyp(h) =
where polynomial Py.41({A) is defined by (3.2).

Proof. 'We have to prove that coefficients F;, j =0,..., N of the polynomial Py.4{1)
are integrals of motion of the system (2.8). If L corresponds to the solution of (2.8), then by
theorem 1, the block Hankel matrix Hy = (SJ.H,) =0 is invertible; therefore, it is enough to
show that

N
> B8 =0  k=0,....N.
=0
Differentiating and taking into account (4.2) we have
N N
Z FiSpp; = Z([Fj, R {E, R N18e; + [F;, [E, R l1Sesj41 — [F}, ElSpsjy2) . (4.5)
j=0 j=0
H[R,,E]=0(n=1,0,...,N), thenitiseasytoseethat[F,;, E]=0(n = )

and the right-hand side of (4. 5) is equal to zero, In the other case, R, E = —JIEJR,t and the
right-hand side of (4.5) can be rewritten as follows:

)j(z[ﬂ-, ER11Spsjs1 — LFy, E1Styj32) = 2 Fo, ER-11Sp41
=0

. _
—(Fn, ElSeaniz + 9 _(LF}, ER11 = [Fjoy, EDSpsjit
i=t

N
CL> N QU F;, ER_(] = [Fj1, E1+ [Fy, E1F))Ses 1 -
j=0
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It follows from (3.1) and (3.2) that
Fy-mE = (=1)""'EFy_p .
Therefore, by (3.11),

2[Fy-oms ER1] — [Fy-2m—1, E]1 + [Fy, E]1Fy-om = ~2E(FN-amR-1+ Ry Fy_on) =0
2 Fy—2mt1, ER ] — [Fy_z2m, E1 4 [Fy, E]1Fy-amy
7 = — 2E(Fy_pm + Fy_omi1Rot — Ry Fn_am41) = 0.

Thus lemma 1 is proved.

Lemma 2. Let coefficients of L satisfy the nonlinear system (2.8). Then corresponding
moments 5, = (L*)pp, # =0, 1, ... can be found by formulae

Sy = 8,55 (4.6)
where matrix functions Sg, . . . , Sy form a solution of the finite linear differential system with
constant coefficients

S, =2ES, — ESpiz n=0,....N o @n

fER, = REMm=1,..., N)or
§,=—2ER, 8, —E§s  n=0,..,N 4.8)

if ER, = —R, E, with initial data S, (0) = §,(0), and

N
Sneens =—Y  FiSu; k=0,1,.... (4.9)
j=0 :

Proof. Let us denote by X the solution of the equation X = {R_;, ERp}X with initial
condition X(0) = 1. Then functions S, = S,X satisfy (4.7) or (4.8), depending on the
sign in the first equality of (2.6), forn =0, 1, .... The identity S, = 1 implies that § = X,
hence (4.6) holds. Formula (4.9) follows from (3.10) and, in particular, it gives a representation
of Syt 5,,.;.2 as linear functions of 5, . . ., S, with coefficients depending only on Fy, .. ., Fy.
Together with lemma 1, this allows us to consider (4.7) and (4.8) as a finite linear systems with
constant coefficients. )

Linear systems (4.7) and (4.8) give us a linearization of the nonlinear system (2.8).
The recipe for a solution of the initial boundary problem with boundary condi-
tions R—1, Ry, (R, = R} = 1) and initial data R,(0) (n = 0,..., N — 1) is to construct
the difference expression L(0} and the moment sequence S(0) = (S, (0152, to find S, (£) by
(4.6)—(4.9) and then to restore unknown functions R, (¢) using (3.12), provided non-degeneracy
conditions (3.8) is fulfilled. Note, that since the initial sequence S(0) is non-degenerate, (3.8)
may fail for at most countably many isolated values of z.
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5. Discrete modified XdV equation

In the simplest case
m=1 R,,=r,,E(C1 E=-1

the Lax equation (2.1) or, equivalently the system (2.8), turns into the finite discrete modified
Kdv (DMKdAV) equalion

o= (1 =5 (Fpg — Famt) n=0,...,N-1
(3.1
r-1 =8 ry =& g2 € {-1,1}.
(Another Lax representation of (5.1), connected with the non-Abelian Volterra lattice can be
found in [13].)
Since coefficients of the difference expression {2.2) that corresponds to (5.1) as well as
moments s, = S, are scalar, (3.12) can be simplified:
Ap
Fp =71 — — n=0,....N 5.2)
Ay

where A, =det H, = det(sj_,,k)",-‘. =g and

S0 v Sp1 Spyl
51 -8 5

! =det| moo e (5.3)
Sy vt Sap] Sappl

Note that due to (3.9) moments s, satisfy relations
Sopv2 = 2r_182n41 n=0,1,.... (5.4)

Since L is a 3-diagonal matrix with scalar elements, and matrix elements above and below
the main diagonal are non-zero due to (2.3), L has exactly N +-1 distinct points of the spectrum:
Agy - .., Ay. However, these points could not be arbitrary, as coefficients of the polynomial
Pra(h)y = (= Ao+~ (A = Ay) = AN + ¥ FjAJ obey (3.11), which now reads

Fyox = (ry — r—1)Fy—2x+1 (rv +ro)Fy_ox =0. (5.5)

The relations (5.3) vield the following,

Lemma 3. If ry = r_g, then the spectrum of L is symmetric with respect to zero, zero being
a point of spectrum if and only if N is even. If ry = —r_y, the spectrum of L consists of the
point 2r_; and the part which is symmetric with respect to zero, zero being a point of spectrum
if and only if & is odd.

To find a solution of the initial boundary-value problem for DMK4AV we use lemma 2
and (5.2). Taking into account the fact that r,, in (5.2) does not change after the multiplication
of all moments s, by the same number, we obtain the following.

Theorem 2. TFor any initial data rg(0), ..., ry—1(0) (1 — rf(ﬂ) # Q) the solution of the initial
boundary-value problem (5.1) for the DMKdV equation is given by (5.2) and (5.3) with s,
substimited by z,(t), where

dr gs
() = 2o @PCL O zern) = 7 LOY exp(L2Ooo (5.6)

and L(0) is a difference expression (2.2) constructed from initial data.
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Proof.” It follows from lemma 2, that for any ¢ values 5, (#) can be found as

52 (1) = 5a(D50() ™ = 2a @) 20()™!
where

n(t) = Zuiz2(®), (@) =5(0)  n=01,....

Itis easy to see that z,(t) = 3 ooy Spy22(0)2%/ 4! . Bearing in mind (3.4), we get
_ — 2% ()] tk - = 2k 0 tk _ LZ
w®) =) L*Ohw 15 ={ 2 L*O 57} = ExpGL O
k=0 k=0 L

21 = (L(O) exp(tL*(0)))ga -

Then (5.6) follows immediately.
Generally speaking, the solution of (5.1) may have singularities. However, it is globally
defined if initial data satisfy (3.3):

0 eR, rX(0) <1 n=0,1,....,N=1. 5.7

Since (3.6) obviously holds, L(0) is similar to a self-adjoint 3-diagonal matrix and therefore
we have a representation (3.7) for the moments 5,(0) (n.=0,1,...)

N
2(0) =) A%g; : G-8)
j=0

where kg < Ay < --- < Ay € IR are points of the spectrum of L(0) and p; = p(d;) > O are
.juulbps of the scalar spectral measure p{A) with points of growth Ao, ..., Ay and a property

2_j0 A(*;) = 1. Using (5.4) and lemima 3, we get

(A =2r)p) = ~(A +2ro)p(—4) (59

for every A € R. Since p(A;) > 0, (5.3) implies [X;| < 2(f=0,...,N).
It is easily seen from (5.8) _that (5.6) can be rewritten as

N
2
() = Zl}’pj et
J=t

Moreovet, it can be shown that determinants A,, A/ in (5.2) and (5.3) with S, substituted
by z,(#) have the following expressions in terms of A;, p;:
An=2,0= 3. TR g g WRG, ) (5.10)

0L joe<jp N

) 2 sl
A=Ay = Y. eH T g g Wy, 0 Gy e A) . BAD
0o <<V
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Theorem 3. Let initial data r,(0) (n = 0,..., N — 1) for (5.1) satisfy (5.7) and let
M <M < - <Ay g ( =0,...,N) are points of the spectrum and jumps of the
spectral measure which correspond to the matrix L (0), constructed from r, (0). Then

(1) Initial boundary-value problem (5.1) has a unique globally defined solution

An(n)
)y =r — 2.0 (5.1
with A,{z), A}(#) asin (5.10) and (5.11).
(2) Solution (5.12) has the following asymptotics as 7 tends to 4-co.
() Ifry =r_1,then
. 12
roant1 () —> 1y ron(t) — ry — f t — oo (5.13)
N
() K ry = —r_y, then
5 ’
Fonp1(8) —> iy — z’i“" Fan(t) —> 1y t — 0. (5.14)
N
Here
lN—n if lN <2
Wy—n =
T Ay fAw =2,

Proof. The first statement of the theorem drops out immediately from theorem 2 and the fact
that all terms in the sum (5.10) are positive.

To prove the second statement, one has to consider the leading term in (5.10), (5.11)
as ¢ tends to -+co. By lemma 3, in the case (i) the set {A;; i = 0,..., N} is symmetric
with respect to zero, therefore the leading exponent in expressions for Ay, (2), A%, ()
is €@+ +tAin0t4ha¥, the leading exponent in expressions for As,((r), Al () is
2+ To prove (5.13), we need only to compute coefficients near the leading
exponents, using (5.9). The case (if) can be treated in the same way. Note that by lemma 3,
iy =2ifandonlyifry = —r_; = —1.

Remark, Formulae analogous to (5.10) and (5.11) in the case of the finite non-periodic Toda
lattice were first presented in [25] and used therein to rederive the Moser’s result on the
asymptotic behaviour of the finite Toda lattice [5]. In [26] they were used to find a f-series
expansion of solutions of the double-infinite Toda lattice.

6. Discrete nonlinear Schridinger equation

Another particular case of the Lax equation (2.1)—(2.5) is the finite DNLS equation

iFy = (1 = lra[® (ot + Fagt) — 2y n=0,....,N~1 (6.1
with boundary conditions .
2it-Higy

r_;=¢ ry = g2t oo eR. (6.2)
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‘We obtain DNLS from (2.7) after choosing

-1 _{(0 P P e
m=2 Rn_(rn 0) E——~C—(0 i). (6.3)

After a substitution 7, —> ¢~%*r,, (which is equivalent to putting C in (6.3) to be equal to
zero) we gel a system

iy = (1 — |ral®) (Fet + ras1) n=0,...,N-1
] ) (6.4)
ra=e"  ry=e€” pLpell

Before applying to (6.4) resulis of section 4, let us discuss, as in the previous section,
spectral properties of the corresponding difference expression (2.2).
The motnent sequence (3.4) now has the form

Soppt = ( P 0 Sz'(')ﬂ) Sy = 5241 (6.5)
2ntl

where 55, € R (n =0, 1, ...) and due to (6.3) the condition (3.9) of theorem 1 reads
San42 = 2Re(€ ¥is2001) . 6.6)
Given a sequence (S5,)2°, coefficients r, can be found from formulae which follow from (3.12):

Ay
=r_ 8.7
n=r_, A, ®.7)
where

So 5§ S22 8

: §1 S 53
A, =det| 52 5
83
. Szn
So 51 © Spe2 S
51 T Sap—1  S2n41
, .
Al =det (6.8)
Sz S
Sop—1 S2n S4p—3  Sdn—1i
30 51 - S2nel  Sanqd
N . $2n San42
L
As, = det )
S2p=1
S2, Sqp—1 Sapy1

The spectrum of L is always symmetric with respect to zero and the multiplicity of
eigenvalues is less than or equal to 2. Since for R, from (6.3) condition (3.6) is obviously
fulfilled, assumption (3.5) or, equivalently,

lral? < 1 n=01,...,N—-1 6.9)
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leads to the representation (3.7) for moments S, with

e oy = | P+ p-(Ay) ' 7

It follows from (6.5) that
pu(=Aj) = £px(hs).
Moreover, (6.6) yields the identity
Ajp+(hi) = 2Re(e™p_(A;)). (6.11)

Using the non-negativity of p(3;), we get from (6.10), (6.11)

4 . .
P+ (Y —lo- ()P = (F - 1) Re(e™p(4;)))% — Am(e ™ p_(A)))* 2 0 (6.12)
¥

which means that for every A; from the spectrum of L
Al <2, (6.13)

Let us now return to the initial boundary-value problem (6.4) with initial data r, (0) (n =
0,..., N — 1) and let L(0) be the corresponding difference expression constructed by (6.3),
(2.2) with moment sequence (§,(0))o2,, spectrum A; (f = 0,..., k) and in the case when
r,(0) satisfies (6.9), with non-negative jumps of the spectral measure p(A;). Let us also denote

B(A) = A4 =22 (}) = Rele™p_(3)) B() =TIm(e™p_(4)).

Theorem 4. Solution of the initial boundary value problem (6.4) is given by formulae (6.7),
(6.8) with s, substituted by the solution §, of the linear system

S2n41 (1) = 2iGan1 (1) + €¥5,01 () — BBanua(?) 52041(0) = 52441 (0) (6.14)
H
Fo(t) = exp (—2 f Im(e'?5, () du) Fanga(t) = 2Re(e %5041 (1)) . (6.15)
)

If initial data r, () (n = 0, ..., N — 1) satisfy (6.9), then the solution is globally defined
and

k
St @) = ) A4y, 1) (6.16)
j=0

where

A, )= cif’(a(l,-)(cosh(u(lk)t) 4 'J:__, 4— A} sinh(p,-(}\j)t))

+,3(Aj)(icosh(u(lj)t)+ A sinh(p,(}\.j)t))). (6.17)
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Proof. (6.4)is equivalent to the Lax equation (2.1)~(2.5) with E = (Bi 0) anticommuting

with R, ( 0 and € = 0. Therefore, by lemma 2 the moment sequence (S, (#))3%,
corres;:ondmg to L(t) can be found from (4.6), (4.8). I follows from the proof of lemma 2
and that 8y = {R_;, ERy} Sy = —2Im(c™ry)&y So(0) = 1. Hence, S, has the form (6.5)
and since r,, in {6.7) does not change after the multlphcauon of all s, by the same real number,
we may substitute S,(t) by 5,(z), where

c (@ O . {0 S

The linear system (6.14), (6.15) is simply system (4.8) rewritten using identity (6.6).

Now letinitial data satisfy (6.9). Itcan be verified directly that functions Sa,41 (f) defined by
(6.14), (6.15) form a solution of {6.14). Moreover, (6.15) leads to the folIowmg representation
for 52, (£):

.
S:lt) = )45 (g 1)
=0

where

. 2 . - .
B, t)——-(a(l;)cosh(u(k;)r)+ ﬁﬁw) Sinh(n(lj)t)) = %Re(e-'vﬁ_(kj, ).
— 32 3]
. j
Then
k
alty =) _ATFGy, 1)
=0

where

p—(}tj’t) P+O‘-,u t)

In view of (6.12), (6.13), matrices F(A;, ¢} are non-negative. This, together with the inequality

Plhy,1) = (’?f("f”) ?’f—(kf,t)) _

k
3 D =50 =1>0
J=0

yields a positive-definiteness of the matt;ix Hy in (3.8). Therefore, by theorem 1, for every ¢
we may restore ry, (t) using (6.7), (6.8) which means that solution is globally defined.
7. Another boundary condition
In this section we suppose that assumption (3.6) is satisfied and consider system (2.8):
R,=(1- Rﬁ)(R,,_lE ~ ERpt1) n=L...,N - (B))
with boundary conditions
Ry=0 Ry =@ ¢* =1, (12
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Let us denote
R_,=—-£"R, n=1,...,.N (7.3)

where ¢ = —1,if R, £ = ER, and ¢ = 1 otherwise. Then it is not hard to see that functions
Ry, ..., Ry form a solution of the initial boundary-value problem (7.1), (7.2} if and only if
functions R_y, ..., R-1, Ro =0, Ri,..., Ry form a solution of the iritial boundary-value
problem

Ry = (1 = RB(Rym1E — ERp1) n=-N,...,N
(7.4)
R_.N_| = -EN+1(D RN.;.] =&,

Therefore, in order to solve (7.1}, (7.2) with initial data R;(0), ..., Ry(0) one can extend the
initial data according to (7.3) and then use results of section 4 to solve (7.4).

Both finite DMKdV and DNLS equations with left-end boundary condition 5 = 0, and
right-end boundary condition being unchanged, can be treated in this way.
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Appendix

As we have mentioned, conditions (3.8) and (3.10) of theorem 1 are necessary and sufficient
for the sequence S = (S,)72, to be 2 moment sequence of some finite difference expression
(1.2) [13,14]. We shall prove here that if this difference expression has a form (2.2)~(2.4),
then corresponding moment sequence satisfies (3.9) and relations (3.11) for coefficients F; in
(3.10) hold true. The inverse implication can be checked straightforwardly,

Consider matrix polynomials P,(A) (r = 0, ..., N + 1) defined by the recursion (3.1)~-
(3.2). Then, by the usual induction, one gets the following.

Lemma 5. Let
Pa() = A"1+4 Pop Ao+ Py
Then

Pn+1.n—M = er Pn,n—zk - Pn.n—ZkR—!
(A1)
Potn=2k=1 = Prn—ag—2+ Bn Py poopmt + Prp—2k—1R-1.

Since F; = Py4,; (f =0,..., N) relations (3.11) easily drops out from (A.1) and (2.4).
1t follows from (3.1) and (3.4) that 3 ;_, P» ;S; = 0. Therefore

n~—1

Se=—)_ Py;S;. (A2)
j=0
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Suppose Su4z = {Sup, Ba} ¢ = O,---yn — 1). Then [R_y,Spy] =
[R—lo {SQJH-I! R—l }] = [Rg'.la SZk+1] = 0-
Consider
n
A2
Sums2® ~ E(PZn+2.2n—2k+1S2n+l—2k + Pant2,20-2%S25-2c)
pr :
“n 241
=" — Ronp1 E Pop 1,18k -+ R1 50441
k=0
r—1 3
+ D Prntton-s-t (o1 Santet = Son-2t) — 3 Prus1, 20 Rt 8202k -
k=0 . k=0

The first sum in the last expression is equal to zero according to (A.2). Using the assumption
of the induction and commutativity of R_; and Sy, (k =0, ..., n), we obtain

21
A2
Sonss = Ry Soner — Z PZn-i—I,kSkR—l(:){R—Is Sane1}
: =0 ,
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