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Non-Abelian nonlinear lattice equations on finite interval 

M I Gehmant 
Department of Theoretical Mathematics, "he Weizmann Institute of Science, Rehovot 76100. 
Israel 

Received 10 Iune 1993 

Abstract. We apply fie inverse spearal problem method to the class of non-Abelian nonlinear 
lattice e q d o n s  on the finite inkmal. The mtegrabk discrete nonlinear ScMidinger and discrete 
modified Kmeveg-de Vries equadonh are considered as examples. In the lattercase the large time 
asymptotics for solutions me  found.^ 

1. Introduction 

In recent years much attention has been paid to an investigation of boundary-value problems 
for integrable nonlinear equations, both partial differential and differential-difference 11-41. 

The famous work of Moser IS], where the finite Toda lattice with free ends has been 
integrated, can be viewed as a first result in this direction for integrable lattice equations. 
Berezansky [6,7] used the inverse spectral problem for Jacobi matrices [SI to integrate the 
half-infinite Toda lattice with one end at -CO. We should also mention in this connection [9], 
where the role played by orthogonal polynomials on the line in the investigation of half-infinite 
lattices has been first recognized and [lo], where Todaflows on self-adjoint matrices in &(E+) 
have been investigated. 

The analogue of the direct and inverse spectral problem for self-adjoint difference 
expressions with operator coefficients (operator Jacobi matrices) allowed the application 
of the methods of [6,7] to the investigation of isospectral deformations of operator Jacobi 
matrices [11,12] and furthermore, after a proper generalization of the spectral theory to the 
non-symmetric case, to consider in [13,14] Lax equations 

(1.1) 
d i = [ L ; A ] = L A - A L  .=- , 

dt 

where L = L(t)  is a finite or half-infinite differeuce expression with operator coefficients 
acting on sequences (u.) of vectors from some Banach space 

(1.2) 

where n = 0, ..., N < CO; U - 1  = 0, A-1 = 0, A. is invertible (n 2 0) and 
uN+I = 0, AN = 0, if N < 03. 

An auxiliary operator A in (1.1) is a finitedifference expression with operator coefficients. 
Non-Abelian Toda and Volterra lattices (cf C15.161) are particular cases of (1.1). These 
equations were integrated in [13,14] in the finite and half-infinite situation. 

(LuL = An-~un-t + &U, + G+I 

t Recipient of a Dov Biemn Postdoctoral Fellowship. 
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ThemainpointintheintegrationoftheLaxequation(1.1)is toconsideranevolutionof the 
so-called moment sequence S = (Sn)z+, that corresponds to the difference expression (1.2): 

s, = (L")m. 

It turns out that S, satisfy linear equations 

where numbers kl, k2 and operator coefficients M j ,  Nj are determined by the auxiliary 
operator A. Generally speaking, Mj,  Nj  depend on unknown functions A,, B.. However, 
in many situations it is possible to solve system (1.3) and then to restore unknown 
functions A,, B,. using the inverse spectral problem. 

It is interesting to impose certain additional restrictions on coefficients A,, Bn in (1.2) and 
to consider the Lax equations which are compatible with these restrictions. In such a way one 
obtainsreductions ofnon-Abelianintegrablelattices. Oneofthepossiblereductions oftheLax 
equation (1 .I) in the finite case is considered in section 2. (The half-infinite situation has been 
treated in 1171.) In section 3 we study the spectral problem for the corresponding difference 
expression (1.2) and in section4 give a recipe for solving the initial boundary-value problem 
for the non-Abelian equations introduced in section 2 with particular boundary conditions 
compatible with the Lax equation. These results are applied in section 5 to the investigation of 
the initial boundary-value problem on the finite interval for the discrete modified KdV (DMK~V) 
equation. 

Section 6 is devoted to the investigation of the integrable version of the discrete nonlinear 
Schriidinger (DNLS) equation 

(1.4) 
2 if, = (1 - Ir,l )(rn--l + rn+d - 2r. 

which is also known as the Ablowitz-Ladik model, since Ablowitz and Ladik introduced this 
equation andstudied it by means oftheinversescatteringproblemmethodinthedouble-infinite 
case [IS]. We should emphasize the difference between (1.4) and the standard discretization 
of the nonlinear Schriidmger equation, which appears in physics in the form 

it, = (rn-l+ r,+l - Zr,) i lrn12r,, (1.5) 

and is non-integrable. The comparison of different features of the integrable and non-integrable 
DNLS equations can be found, e.g., in [19]. 

Finally section 7 treats other boundary conditions similar to those considered in [ 1,201 for 
the half-infinite Toda lattice. 

We would like to point out the close connection between our approach and methods of 
papers of Common and Hafez 1211 and Common 1221, where properties of various classes of 
continued fractions and related moment problems were used to linearize half-infinite DMKdV, 
DNLS and some other lattice equations. 

2. Lax equation 

We consider the Lax equation 

i = [ L ,  A] 



Finite non-Abelian lattice equations 6305 

associated with the following difference expression with manix coefficients 

( L u ) ~  = (1 - R:-~)U,-I  + (&-I - 
U-1 .= u&+i = 0 U = (un)=0 U ,  E Cm R, = ~ R , ( t )  E Cmxm. 

+ ~ n + i  

(2.2) N 

We also assume that the following additional conditions are valid 

1 - R,'is invertiblen = 0,. ~ . ,  N - 1 (2.3) 

and 

R?, = R i  = 1. (2.4) 

In what follows we identify the difference expression L with block 3-diagonal matrix 
acting in C(N+l)m. The auxiliary operator A is chosen in the form 

(Au) ,  = Gnu, + Dnu.+1 + Eu,+z C, = Ce(r) D, = &(t) n = 0, . . . , N .  

(2.5) 

Here E does not depend on t. 
It follows from (2.1) and (2.3) that matrices CO, DO, E and coefficients of the difference 

expression (2.2) completely determine C, (n = 1,. . . , N )  and D, (n = 1,. . . , N - 1). 
Therefore the consistency of (2.5) with (2.1)-(2.4) depends upon an appropriate choice of 
CO, DO, E .  If, in addition, we want the Lax equation to be local with respect to R,, then it 
can be verified directly that CO, Do, E should be chosen to satisfy the following conditions: 

RnE=*ER, ,  n=l ,O  ,..., N ~ D o = R - I E - E R I  C o = C - ( R - 1 ,  ER01 

~ 
~ 

(2.6) 

where C E Cmxm does not depend on t and [C,  E ]  = 0. The Lax equation implies now that 

Dn = Rm-lE - ERn+i Cn = C - (Rn-1, ER"} 

and is equivalent to the nonlinear system of differential equations 

R, = (1 - R:)R,-,E - ER, ,+~(I  - ~ , 2 )  + [R, ,  CJ n = 0, .  . . , N - I 
(2.7) 

k i  = [R-1, C ]  d ,  = [ R N .  C ]  R?1 = R i  = 1. 

Obviously, the change of variables R. -.+ U R n V i ,  where U = CCJ, leads to the system 

d, = (1 - R:)Rn-lE - E R , + i ( l -  R:) n =0, ..., N - 1 
(2.8) 

R-1 @ 1  RN E @z @ I ,  @2 E C m x m ~  @; @: = 1 

and therefore without loss of generality we may assume C = 0. 
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3. Spectral data and inverse problem 

Inorderto applytheinversespectralproblemmethodtothesystem(2.8)letusconsiderspectral 
data that correspond to the difference expression (2.2) viewed as alinear operator in C(N+l)m. 

For any A E C one can construct the set of matrix polynomials &(A) = 1, . . . , P,(h) by 
means of the recursion 

AP,(A)=(~-R~_,)P,-~(A)+(R,-~-R,)P,(A)+P,+I(A) n = O  ,..., N - 1 .  

Then P. (A) is a polynomial of degree n 
(3.1) 

P,(A) =A"l+(Rn- l  - R-l)An-' +-.. . 
Let 

It is easy to see that the point A belongs to the spectrum of L if and only if 

det P N + ~  (A) = 0. (3.3) 
Due to the isospectral property of the Lax equation, the scalar polynomial det PN+~(A) 
conserves, if Rn (n = 0, . . . , N - 1) evolve in accordance with (2.7) 01 (2.8). h, fact, we shall 
show later that the polynomial PN+I (A) itself is an integral of motion of the system (2.8). 

Following [13,14] we consider the sequence S = (Sn)z+ of matrices from Cmrm 

S, = (L")w n = 1,2, .._ so = 1 (3.4) 
where (L")w is a coefficient of uo in the expression for (L"u)o or, in other words, the upper 
left block m x m coefficient of the matrix L". We shall call S a moment sequence of L. To 
justify the term 'moment', let us consider (2.2) under the additional assumptions 

(3.5) R,, = R,* n =  I ,  ..., N RN < 1 n =0, .... N - 1 .  

[Ri ,  Rk]=O n , k = - l , O  ,..., N .  (3.6) 
Then L is similar to the self-adjoint operator i = V-ILV, where V is a block diagonal 
operator in C(N+l)m: 

2 

We assume also that 

(Vu) ,  = V"U, v, = 1 V n -  - (1 - R;)"'...(l- Ri-l)'/2 n = 1 ,  ..., N 

and i has a form 

(iu),, = (1 - R;-,)'/'U~-I + (&-I - %)U, + (1 - R,Z)"%, . 
According to the theory of symmetric second-order difference expressions with matrix 

coefficients [8,23] there exists a set of non-negative m x m matrices P I ,  . . . , p~ such that 
- K 

s,, = ~ ~ p j  , n = 0, I, . . . 
j=l 

(3.7) 

where Al.. . . , AK are distinct points of the spectrum of i (and therefore of L). The 
representation (3.6) means that S,, is an nth moment of the non-negative matrix measure 
with points of growth Aj and jumps pj = pj(Aj). 

Given a sequence S = (&)E+ of m x m matrices, a natural question arises: when S is a 
moment sequence of the difference expression (2.2) which satisfies (2.3). (2.4). 
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Theorem 1. The sequence S = (&)E+ of m x m matrices is the moment sequence of some 
difference expression (2.2)-(2.4) with R-1, RN given if and only if the following conditions 
hold true. 

(1) S is non-degenerate, i.e. for every n = 0, I, . . . , N the block Harkel mabix 

Hn = (Sj+k);,k& (3.8) 

is invertible; 
(2) 

S ~ + Z  = { R - I ,  S,+,} n = O , l ,  ... 

(3)forevery k = 0.1, ..I 

(3.9) 

(3.10) 

where n x m matrices Fo, . . . , FN satisfy the relations 

RNFN--~x+I - FN-z+IR-I = FN-2k - 

(3.11) 
RNFN-W + F N - ~ R - I  = 0 k = 0,. . . , [ :] FN+I = 1, F-1 = 0 .  

The sketch of the proof will be given in the appendix. 

Remarks. 
(1) Conditions (3.8) and (3.10) ensure S to be the moment sequence of some difference 

expression (1.2) (see 113,141). whereas relations (3.9) and (3.10) are responsible for this 
difference expression to be of the form (2.2)<2.4). 

(2) Matrices Fo, . . . , F, in (3.10) coincide with coefficients of the polynomial P,v+l(A) 
(equation (3.2)), which correspond to L. 

(3) Assumptions (3.5) and (3.6) imply the positivedefiniteness of & in (3.8). 
The inverse problem for (2.2) consists in recovering coefficients R,, from the given moment 

sequence which meets conditions of theorem 1. Therecurrent procedure for the solution of the 
inverse problem in the case of general difference expression (1.2) was presented in [13,14]. 
Another approach, proposed recently in [%I, is based on the inversion of block Hank1 
matrices (3.8). Taking an advantage of the special form of (2.2), one can show that if 

r, = (~j;));,~~ y;;) E c m * m  

is an inverse of Hn, then the formulae 

R A  = R-I + (yin n) ) - I  Y,,.-~ 6) It = 0,. . . , N (3.12) 

give the coefficients of the corresponding difference expression (2.2). As we shall show below, 
in particular cases (3.12) may be rewritten in a more explicit way. 
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4. Evolution of spectral data 

Let us assume now that Rfi (n = 0, . . . , N - 1) evolve in accordance with nonlinear system 
(2.8) or, equivalently, the difference expression (2.2) satisfies theLax equation (2.1). Consider 
the moment sequence S = (&)E* corresponding to L. Then 

Sn = (t% = ([L", A I ) ~  = [s,, col - D ~ ( L ~ ) ~ ~  - E ( L " ) ~ ~ .  (4.1) 
Using evident equalities 

&+I = (L.L")w = (R-I-RO)S~+G')IO 
and bearing in mind (2.2) and (2.6), one gets after excluding (L")lo, (L")u, from (4.1) 

sn+z = (~2)~~~+(~2)ol(~n)i~+(~Z)a~(Ln)~ 

S n  -Sn{R- i ,  ER01 + R-IIE,  R-i lSn + [ E ,  R-ilSn+~ - ESn+z. (4.2) 
Direct calculations show that (4.2) is consistent with (3.9). It foUows from (2.6) that (4.2) 

reads 

S, -S,J{R-i,  Ro] + 2ES. - ESn+2 (4.3) 

S, = -S,E[Ro, R-11 +2ER-iSn+1 - ESn+z (4.4) 

if E and R, commute, and 

if E and R,, anticommute. 

Lemma 1. Let coefficients of L satisfy the nonlinear system (2.8). Then 

PN+I (A) = 0 

where polynomial PN+1 (A) is defined by (3.2). 

Proof. We have to prove that coefficients 6, j = 0, . . . , N of the polynomial P ~ + l ( h )  
are integrals of motion of the system (2.8). If L corresponds to the solution of (2.8), then by 
theorem 1, the block Hankel matrix HN = (Sj+k)fk=a is invertible; therefore, it is enough to 
show that 

h l  

&sk+j = 0 k = 0,. .. . N 
j=O 

Differentiating and taking into account (4.2) we have 

4 S k + j  

N N 

E([&, R- l (E ,  R - ~ ] l & + j  + [$, [ E ,  R - I ~ & + ~ + I  - [ f i t  E ] S k + j + d .  (4.5) 
j=O j=O 

IfIR,, E] = O ( n  = 1,0 ,..., N),thenitiseasytoseethat[F,, E ]  = O ( n  = O  ,..., N) 
and the right-hand side of (4.5) is equal to zero. In the other case, R,E = -ER,  and the 
right-hand side of (4.5) can be rewritten as follows: 
N C(XFj. ER-lISk+j+l - 15, ElSk+j+d = ~[Fo. ER-~I&+I 

j = O  

N 

j = l  
- [ F N ,  E]Sk+N+Z + C(2[6, ER-11 - [Fj-i, EI)Sk+j+l 
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It follows from (3.1) and (3.2) that 

FN,E = (-~)'"+'EFN,. 

Therefore, by (3.11), 

~ [ F N - % .  ER-11 - [ F N - z ~ - I .  E1 + [FN,  E I F N - ~  = - ~ E ( F N - ~ ~ R - I  + R N F N - ~ )  = 0 

~ [ F N - ~ + I ,  E R A  - [ F N - z ~ ,  El + [FN, EIFN-z,,+I 

=~ - ~ E ( F N - ~  + FN-&.I R-I - RN F N - ~ + I )  = 0 .  

Thus lemma 1 is proved. 

Lemma 2.  Let coefficients of L satisfy the nonlinear system (2.8). Then corresponding 
moments S, = (L")w, n = 0,1, . . . can be found by formulae 

- -  
s, = S"S,-l (4.6) 

where matrix functions So, . . . , S N  form a solution ofthe finite linear differential system with 
constant coefficients 

(4.7) 5, = 2E5, - ES,+2 n = 0,. . . , N 

if ER, = R,E (n = 1 , .  . . , N )  or 

- 
sNtk+1 - - c F j S k + j  - k = O , 1 , . .  

j=O 
(4.9) 

Proof. Let us denote by X the solution of the equation X = IR-1, ERo}X with initial 
condition X ( 0 )  = 1. Then functions 3, = S,X'Satisfy (4.7) or (4.8), dependingon the 
sign in the first equality of (2.6). for n = 0,1, . . . . The identity S, = 1 implies that 5, = X ,  
hence (4.6) holds. Formula(4.9) follows from (3.10) and, in particular, it gives arepresentation 
of$+I, Sn+2aslinearfunctionsof&, ..., .?,withcoefi?cientsdependingonlyonFo, ..., FN. 
Together with lemma 1, this allows us to consider (4.7) and (4.8) as afinite linear system with 
constant coefficients. 

Linear systems (4.7) and (4.8) give us a Iinearization of the nonlinear system (2.8). 
The recipe for a solution of the initial boundary problem with boundary condi- 
tions R-1, R N ,  (R?, = R i  = 1) and initial data R,(O) (n = 0 , .  . . , N - 1) is to construct 
the difference expression L(0) and the moment sequence S(0) = (Sn(0))zo, to find &(f) by 
(4.6)-(4.9) and then to restore unknown functions R,(t) using (3.12). provided non-degeneracy 
conditions (3.8) is fulfilled. Note, that since the initial sequence S(0) is non-degenerate, (3.8) 
may fail for at most countably many isolated values o f t .  
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5. Discrete modified K ~ V  equation 

In the simplest case 

m = l  R, = r, E C' E = -1 

the Lax equation (2.1) or, equivalently the system (2.8). turns into the finite discrete modified 
KdV (DMKdV) equation 

in = (1 - r:)(rn+l - rn-l) 

r-1 ~1 rN =&Z 61.2 E I-1.11. 

n = 0, . . . , N - 1 
(5.1) 

(Another Lax representation of (5.1), connected with the non-Abelian Volterra lattice can be 
found in [13].) 

Since coefficients of the difference expression (2.2) that corresponds to (5.1) as well as 
moments s,, = S,, arescalar, (3.12) can be simplified: 

where An = det H, = det(sj+&=O and 

r s 0  ... &-I S"+l 1 
s1 ... 
. . . . . . . . . . . . A; = det (5.3) 

Note that due to (3.9) moments s. satisfy relations 

ski* = Zr-lsb+l n = 0,1,. . . . (5.4) 

Since L is a 3-diagonal matrix with scalar elements, and matrix elements above and below 
the main diagonal are non-zero due to (2.3), L has exactly N + 1 distinct points of the spectrum: 
Ao, . . . , AN. However, these points could not be arbitrary, as coefficients of the polynomial 
PN+~(A) = (A - A,). . . (2. -AN) = ,IN+' f xi", FjAj obey (3.11), which now reads 

FN-ZK = (rN - T-i)FN-ZK+l (rN + r-l)FN-ZK 0. (5.5) 

The relations (5.5) yield the following. 

Lemma 3. If ?'N = r-1. then the spectrum of L is symmetric with respect to zero, zero being 
a point of spectrum if and only if N is even. If rN = -r-1, the spectrum of L consists of the 
point 2r-1 and the part which is symmetric with respect to zero, zero being a point of spectrum 
ifand only if N is odd. 

To find a solution of the initial boundary-value problem for D M d V  we use lemma 2 
and (5.2). Taking into account the fact that r, in (5.2) does not change after the multiplication 
of all moments s,, by the same number, we obtain the following. 

Theorem 2. For any initial dataro(O), . . . , rN- l (O)  (1 -.,"CO) # 0) the solution of the initial 
boundary-value problem (5.1) for the DMKdV equation is given by (5.2) and (5.3) with s,, 
substituted by z,(t), where 

z d t )  = - (exp(tLz(o))), z*+l(t) = (L(0)exp(tLz(O)))w (5.6) 

and L(0) is a difference expression (2.2) constructed from initial data. 

d" d" 
dt" 
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Proof. ~ It follows from lemma 2, that for any t values s, (t) can be found as 

S,(t)  = q t )&( t ) - l  = z.(t)zo(t)-' 

where 

i . ( t)=z*+z(t) ,  zn(0)=sn(O) n=0 ,1 ,  ... . 

It is easy to see. that zn(t)  = Ego S,+w(O)t'/k!. Bearing in mind (3.4), we get 

Z I  (O = (L(o)exp(tL2(o))), 

Then (5.6) follows immediately. 

defined if initial data satisfy (3.5): 
Generally speaking, the solution of (5.1) may have singularities. However, it is globally 

r , ( O ) E R ,  r,2(0)<1 n=0 ,1 ,  ..., N-1.  (5.7) 

Since (3.6) obviously holds, L(0) is similar to a self-adjoint 3-diagonal matrix and therefore 
we have a representation (3.7) for the moments s,(O) ( n ~ =  0,1, . . .) 

where A. c At e . . . < AN E R are points of the spectrum of L(0) and p j  = p ( A j )  > 0 are 
~jumzs of the scalar spectral measure p(A) with points of growth i o , .  . . , AN and a property 
c j = o p ( A j )  = 1. Using(5.4)andlemma3,weget 

(5.9) (A - 2r-1)p(A) = -(A + 2r_l)p(-A) 

for every A E a. Since p ( A j )  > 0, (5.3) implies IAj [ < 2 ( j  = 0, . . . , N). 
It is easily seen from (5.8) that (5.6) can be rewritten as 

Moreover, it can be shown that determinants An, AA in (5.2) and (5.3) with S. substituted 
by z,(t)  have the following expressions in terms of A j ,  p i :  

An =A,@) = c e(~;o+...+~l 1" )I p j 0 .  . . p j a W  2 @ j o y . .  . , AjJ (5.10) 
O<joc-<j.(N 

Ai = Ai@) = ,(Ai+-+A$t p j o . . . p j m W 2 ( A j o  ,..., A,) ( A j o + . . . + A j m )  . (5.11) 
O,<joc-<ja(N 
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Theorem 3. 

spectral measure which correspond to the matrix L(O), constructed from r"(0). Then 
(1) Initial boundary-value problem (5.1) has a unique globally defined solution 

Let initial data r,(O) (n = 0,. . . , N - 1) for (5.1) satisfy (5.7) and let 
e A, < . . . < AN; pj  ( j  = 0,. . . , N) are points of the spectrum and jumps of the 

(5.12) 

withA,(t), Ah@) asin(5.10)and(5.11). 

(i) If r~ = r-1, then 
(2) Solution (5.12) has the following asymptotics as t tends to +m. 

Proof: The first statement of the theorem drops out immediately fiom theorem 2 and the fact 
that all terms in the sum (5.10) are positive. 

To prove the second statement, one has to consider the leading term in (5.10), (5.11) 
as t tends to +W. By lemma 3, in the case (i) the set {Aj ;  i = 0,. . . , N) is symmetric 
with respect to zero, therefore the leading exponent in expressions for A&(t), A',@) 
is e(2(A?,+...+*?,-"+i)+~~-")', the leadig exponent in expressions for A%+.[ ( t ) ,  A & + ~  (t) is 
e2(A~t".tA~-n)'. To prove (5.13), we need only to compute coefficients near the leading 
exponents, using (5.9). The case (ii) can be treated in the same way. Note that by lemma 3, 
AN = 2 if and only if r~ = -r-, = -1. 

Remnrk. Formulae analogous to (5.10) and (5.1 1) in the case of the finite non-periodic Toda 
lattice were first presented in [25] and used therein to rederive the Moser's result on the 
asymptotic behaviour of the finite Toda lattice [5]. In [26] they were used to find a t-series 
expansion of solutions of the doubleinfinite Toda lattice. 

6. Discrete nonlinear Schrodinger equation 

Another particular case of the Lax equation (2.1)-(2.5) is the finite DNLS equation 

it,, = (1 - Irnlz) (rn-l +rail) - ~ r ,  n = 0, . . . N - 1 (6.1) 

with boundary conditions 

vi. Pz E El. (6.2) r-l = ezir+s,  rN = ezt+i% 
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We obtain DNLS from (2.7) after choosing 

After a substitution r, --z e-*'?-,, (which is equivalent to putting C in (6.3) to be equal to 
zero) we get a system 

ita = (1 - lrn12) (m-1 +r,+l) 

r-1 =e"' T N  = 2% (PI, E RI. 

n =o, ..., N - 1 
(6.4) 

Before applying to (6.4) results of section 4, let us discuss, as in the previous section, 

The moment sequence (3.4) now has the form 
spectral properties of the corresponding difference expression (2.2). 

where s2 e R (n = 0,1, . . .) and due to (6.3) the condition (3.9) of theorem 1 reads 

S ~ + Z  = 2Re(e-i'prs,+1). (6.6) 

Givenasequence (S"):, coefficients?', canbefoundfromformulae whichfollow from(3.12): 

where 

A& = det 

The spectrum of L is always symmetric with respect to zero and the multiplicity of 
eigenvalues is less than or equal to 2. Since for R, from (6.3) condition (3.6) is obviously 
fulfilled, assumption (3.5) or, equivalently, 

lr,1*<1 n=0,1, ..., N - I  (6.9) 
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leads to the representation (3.7) for moments S,, with 

(6.10) 

It follows from (6.5) that 

P+(-Aj) = *P*(Aj) 

Moreover, (6.6) yields the identity 

Ajp+(Aj) = 2Re(e-‘pp-(Aj)). (6.11) 

Using the non-negativity of p(Aj ) ,  we get from (6.10). (6.11) 

p+(Aj)’ - Ip-(Aj)[’ = 

which means that for every A j  from the spectrum of L 

- - 1 (Re(e-’pp-(Aj)))’ - (Im(e-ipp-(Aj)))’ 2 0 (6.12) (; 1 
IS1 < 2.  (6.13) 

Let us now return to the initial boundary-value problem (6.4) with initial data rn(0) (n = 
0, . . . , N - 1) and let L(0) be the corresponding difference expression constructed by (6.3). 
(2.2) with moment sequence (S,,(0))go. spectrum A j  ( j  = 0,. . . , k) and in the case when 
r,(O) satisfies (6.9). with non-negative jumps of the spectral measure p(Aj). Let us also denote 

$(A) = A m  or@) = Re(e-’pp-(A)) @(A) = Im(e-’pp-(A)) 

Theorem 4. 
(6.8) with s. substituted by the solution Zn of the linear system 

z$o- 
& , , + l ( ~  = W2n+l(t) + e s2n+1(O) - i32n+3(0 

Solution of the initial boundary value problem (6.4) is given by formulae (6.7), 

(6.14) L+~(o) = n,,+t(o) 

(6.15) 

If initial data r.(O) (n = 0, . . . , N - 1) satisfy (6.9). then the solution is globally defined 
and 

where 

&(Aj, t )  = &p(ct(Aj) + sinh(&)t)) 
Ai 

(6.16) 

(6.17) 
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Proof. (6.4) is equivalent to the Lax equation (2.1X2.5) with E = (: p) anticommuting 

with R,, (: t) and C = 0. Therefore, by lemma 2 the moment sequence (S. ( t ) ) s  

corresponding to L(t )  can be found from (4.6), (4.8). It follows from the proof of lemma 2 
and that 30 = [R-1, E&,} 30 = -21m(e-i+&?o &(O) = 1. Hence, $, has the form (6.5) 
and since r,, in (6.7) does not change after the multiplication of all s, by the same real number, 
we may substitute &(t)  by $,(t), where 

The linear system (6.14). (6.15) is simply system (4.8) rewritten using identity (6.6). 
Now let initial datasatisfy (6.9). Itcan beverifieddirectly that functions &,,+I (t) defined by 

(6.14), (6.15) form a solution of (6.14). Moreover, (6.15) leads to the following representation 
for Z,(t): 

where 

Then 
k 

s, ( t )  = +i(Lj, t )  
j=O 

where 

In view of (6.12). (6.13), matrices fi(A,, t) are non-negative. This, together with the inequality 

k 
Cfi(Aj, t )  = So(t) 2 1 > 0 
j=O 

yields a positive-definiteness of the matrix HN in (3.8). Therefore, by theorem 1, for every t 
we may restore m(t)  using (6.7), (6.8) which means that solution is globally defined. 

7. Another boundary condition 

In this section we suppose that assumption (3.6) is satisfied and consider system (2.8): 

Rn = (1 - R , ~ ) ( % - ~ E  - ER.+])  (7.1) 

Ro-0  R N + ~  E CP 4*=1. 0.2) 

n = I ,  .. . , N 
with boundary conditions 
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Let us denote 

R-, = -E" R,, n = 1, ..., N (7.3) 

where E = -1, if R,E = ER,  and E = 1 otherwise. Then it is not hard to see that functions 
R I ,  . . . , RN form a solution of the initial boundary-value problem (7.1), (7.2) if and only if 
functions R - N ,  . . . , R-I ,  Ro = 0, R I ,  . . . , RN form a solution of the initial boundary-value 
problem 

R. = (1 - R ~ ) ( R , - I E  - ER.+I) 

R-N-I  = -ENt1@ RN+I @. 

n = -N ,..., N 
(7.4) 

Therefore, in order to solve (7.0, (7.2) with initial data Rl(O), . . . , RN(O) one can extend the 
initial data according to (7.3) and then use results of section 4 to solve (7.4). 

Both finite DMKdV and DNLS equations with left-end boundary condition ro = 0, and 
right-end boundary condition being unchanged, can be treated in this way. 
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Appendix 

As we have mentioned, conditions (3.8) and (3.10) of theorem 1 are necessary and sufficient 
for the sequence S = (&)E. to be a moment sequence of some finite difference expression 
(1.2) [13,14]. We shall prove here that if this difference expression has a form (2.2)-(2.4), 
then corresponding moment sequence satisfies (3.9) and relations (3.1 1) for coefficients 4 in 
(3.10) hold hue. The inverse implication can be checked straightforwardly. 

Consider matrix polynomials P,(A) (n = 0 , .  . . , N + 1) defined by the recursion (3.1)- 
(3.2). Then, by the usual induction, one gets the following. 

Lemma 5. Let 

P"(A) = ~ " P " . , ~ l A . " - ' + ' " + P " , ~ .  

Then 

Pnt1.n-2L = RnPn,n-2 - R . ~ - M R - I  

Pn+l,n--2X-I = Pn,n-zx-z + RnPn.n-2-1 + Pn.n-zx-1R-l. 

Since 4 = P N + ~ , ~  ( j  = 0, . . . , N )  relations (3.11) easily drops out from (A.l) and (2.4). 

(A.1) 

It follows from (3.1) and (3.4) that cy=, Pn,jSj = 0. Therefore 

"-1 

s , = - c p , , j s j .  
j=o 
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Suppose S=+Z = {SU+I. R-I} (k = O , . . . , n  - 1). Then [R-I, Sz+zl = 
E 

M-1, {S~+I. R-111 = [R?,, Sz+ll = 0. 
Consider 

n-1 n 

+ C P Z ~ + I , Z ~ - ~ R - , ( R - ~ S ~ ~ - = - I  -&-U) - Z P ~ ~ + I . ~ ~ R - I S ~ ~ - Z .  
e 0  , k=O, 

The first sum in the last expression is equal to zero according to (A.2). Using the assumption 
of the induction and commutativity of R-1 and SZ.-~ (k = 0, . . . , n), we obtain 
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